China OEM Factory Outlet Passenger Elevator Deflector Price Traction Sheave pulley system

Product Description

Product Name Elevator Traction Sheave
Xihu (West Lake) Dis.i ID 21E005697
Size Φ650x6x12
Material Nodular Cast Iron

 

FAQ

Q1: How can I get XIHU (WEST LAKE) DIS.I updating products catalog?
A1: 1- Pleae contact our sales manger to ask them for it;
      2- Self-downloa from XIHU (WEST LAKE) DIS.I official website;

Q2: How can we pay for trail order or sample?
A2: There is some option for your select: Paypal, Western Union, Wise, Alipay, Cash by USD or CNY or EUR;

Q3: Can I have a sample for testing?
A3: Yes, we offer the charge sample, sample will be 20% higher than offer, and this parts will be back in the bulk order.

Q4: Can I add my logo on the elevator parts?
A4: Yes, we do OEM and ODM service with MOQ required to our valued customer.
Meanwhile please share us the Trademark authorization letter for avoid any problem in the near future.

Q5: How can I enjoy XIHU (WEST LAKE) DIS.I’s after-service?
A5: Actually, after you cooperate with XIHU (WEST LAKE) DIS.I, We are ready to provide after-sales serivce at any time.

Q6: Do you have inspection procedures for elevator parts?
A6: 100% self-inspection before packing.

Q7: Can we mix the 20GP container?
A7: Yes, if the items are meet our min order qty.

Q8: How can I place the order to you?
A8: Here is our order SOP:
        1st– Email our sales manager to talk the order detail;
        2nd– Making the offical quotation sheet for your reference;
        3rd– Sending the Proforma Invoice with deal price for your payment;
        4th– Production the cargo and ready to shipment;
        5th– FOB team, the shipment will be send out by your named forwarder;
        6thCIF term, we will handle with all process by our side for shipment.

Q9: What is the delivery time of the parts?
A9: According to the inventory of different parts, the delivery time is also different;
if its in stock, within 3-7 days delivery time; and delivery within 7-30 days if no stock available;

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1year
Type: Driving System
Suitable for: Elevator
Load Capacity: 500-1000kg
Persons: 6-10
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pulley

What is the significance of sheave diameter and groove depth in sheave design?

In sheave design, the diameter and groove depth of the sheave play significant roles in determining its functionality and performance. Here’s an explanation of their significance:

  • Sheave Diameter: The sheave diameter refers to the size of the wheel-like component. It is an essential parameter in sheave design and has several key implications:
    • Mechanical Advantage: The diameter of the sheave affects the mechanical advantage of the system. Larger sheave diameters generally result in higher mechanical advantages, allowing for easier lifting or force transmission.
    • Belt or Rope Mating: The sheave diameter needs to be selected based on the size and type of belt or rope that will be used. The diameter should match or be compatible with the belt or rope to ensure proper engagement, reduce slippage, and transmit power efficiently.
    • Bending and Flexibility: The diameter influences the bending radius of the belt or rope as it wraps around the sheave. Larger sheave diameters result in larger bending radii, which can affect the flexibility and lifespan of the belt or rope. It’s important to consider the recommended bending radius of the belt or rope material to prevent excessive wear or damage.
  • Groove Depth: The groove depth refers to the depth of the groove or channel on the sheave’s rim that accommodates the belt or rope. The groove depth also has significant implications:
    • Belt or Rope Engagement: The groove depth should be designed to securely hold the belt or rope in place, preventing slippage during operation. It needs to be deep enough to provide sufficient contact and grip on the belt or rope without causing excessive stress or compression.
    • Compatibility: The groove depth should be compatible with the size and thickness of the belt or rope being used. It should be designed to match the specific dimensions and characteristics of the belt or rope to ensure proper alignment and engagement.
    • Load Distribution: The groove depth influences the distribution of load on the belt or rope. A properly designed groove depth helps distribute the load evenly across the belt or rope, reducing localized stress and wear.

Overall, the diameter and groove depth of a sheave are critical considerations in sheave design. They impact the mechanical advantage, belt or rope mating, bending and flexibility, belt or rope engagement, compatibility, and load distribution. Designing sheaves with appropriate diameter and groove depth ensures efficient power transmission, proper engagement with the belt or rope, and optimized performance of the overall system.

pulley

What maintenance practices should be followed to ensure the reliability of sheaves?

To ensure the reliability of sheaves, proper maintenance practices should be followed. Regular maintenance helps to identify and address potential issues before they escalate, extends the service life of sheaves, and ensures optimal performance. Here are some maintenance practices that should be followed:

  • Inspection: Regularly inspect sheaves for signs of wear, damage, or misalignment. Look for cracks, chips, or deformations in the sheave body, as well as wear patterns on the groove surfaces. Inspect the bearings for any signs of wear or excessive play.
  • Cleaning: Keep the sheaves clean by removing dirt, dust, and debris. Accumulated debris can interfere with proper belt or rope alignment, increase friction, and cause premature wear. Use appropriate cleaning methods and avoid using harsh chemicals that could damage the sheave or its components.
  • Lubrication: Follow the manufacturer’s recommendations for lubrication. Proper lubrication reduces friction, minimizes wear, and helps maintain the smooth operation of the sheave. Apply lubricant to the bearings, ensuring they are adequately greased for optimal performance.
  • Alignment: Check the alignment of the sheaves regularly. Misaligned sheaves can cause belt or rope slippage, uneven wear, and increased stress on the system. Adjust the alignment as necessary to ensure proper belt tracking and minimize unnecessary strain on the sheave and associated components.
  • Tension: Maintain proper tension in the belts or ropes. Improper tension can lead to slippage, reduced power transmission, and accelerated wear. Follow the manufacturer’s recommendations for the appropriate tension level and adjust as needed.
  • Replacement: Replace sheaves or components that show significant wear, damage, or signs of fatigue. Continuing to use worn or damaged sheaves can compromise performance, increase the risk of system failure, and potentially cause damage to other components.

By following these maintenance practices, the reliability and longevity of sheaves can be ensured. Regular inspections, cleaning, lubrication, alignment checks, tension maintenance, and timely replacement of worn components contribute to the optimal performance and smooth operation of sheave systems.

pulley

What materials are typically used in the construction of sheaves?

Sheaves are constructed using a variety of materials, depending on the specific application and environmental factors. Here are some of the materials commonly used in the construction of sheaves:

  • Steel: Steel is a popular material for sheaves due to its strength, durability, and resistance to wear. It can handle heavy loads and high-speed applications, making it suitable for demanding industrial settings.
  • Cast Iron: Cast iron is another commonly used material for sheaves. It offers good strength and wear resistance and is particularly suitable for applications where shock absorption and vibration dampening are required.
  • Aluminum: Aluminum sheaves are lightweight, corrosion-resistant, and have good thermal conductivity. They are often used in applications where weight reduction is important, such as in aerospace and automotive industries.
  • Plastic: Certain types of plastics, such as nylon or high-density polyethylene (HDPE), are utilized in sheave construction. Plastic sheaves are lightweight, resistant to corrosion, and have low friction properties. They are commonly used in applications where noise reduction and non-magnetic properties are desired.
  • Bronze: Bronze sheaves are known for their excellent wear resistance and self-lubricating properties. They are commonly used in marine and offshore applications due to their corrosion resistance in saltwater environments.
  • Composite Materials: Composite materials, such as carbon fiber reinforced polymers (CFRP), are becoming increasingly popular for sheave construction. These materials offer high strength-to-weight ratios, excellent corrosion resistance, and reduced noise and vibration levels.

The choice of material depends on factors such as load capacity, operating conditions, environmental considerations, and cost. It is important to select the appropriate material to ensure the sheave can withstand the specific demands of the application.

China OEM Factory Outlet Passenger Elevator Deflector Price Traction Sheave   pulley system	China OEM Factory Outlet Passenger Elevator Deflector Price Traction Sheave   pulley system
editor by CX